- What is Dimension Reduction? | Know the techniques
- Top Data Science Software Tools
- What is Data Scientist? | Know the skills required
- What is Data Scientist ? A Complete Overview
- Know the difference between R and Python
- What are the skills required for Data Science? | Know more about it
- What is Python Data Visualization ? : A Complete guide
- Data science and Business Analytics? : All you need to know [ OverView ]
- Supervised Learning Workflow and Algorithms | A Definitive Guide with Best Practices [ OverView ]
- Open Datasets for Machine Learning | A Complete Guide For Beginners with Best Practices
- What is Data Cleaning | The Ultimate Guide for Data Cleaning , Benefits [ OverView ]
- What is Data Normalization and Why it is Important | Expert’s Top Picks
- What does the Yield keyword do and How to use Yield in python ? [ OverView ]
- What is Dimensionality Reduction? : ( A Complete Guide with Best Practices )
- What You Need to Know About Inferential Statistics to Boost Your Career in Data Science | Expert’s Top Picks
- Most Effective Data Collection Methods | A Complete Beginners Guide | REAL-TIME Examples
- Most Popular Python Toolkit : Step-By-Step Process with REAL-TIME Examples
- Advantages of Python over Java in Data Science | Expert’s Top Picks [ OverView ]
- What Does a Data Analyst Do? : Everything You Need to Know | Expert’s Top Picks | Free Guide Tutorial
- How To Use Python Lambda Functions | A Complete Beginners Guide [ OverView ]
- Most Popular Data Science Tools | A Complete Beginners Guide | REAL-TIME Examples
- What is Seaborn in Python ? : A Complete Guide For Beginners & REAL-TIME Examples
- Stepwise Regression | Step-By-Step Process with REAL-TIME Examples
- Skewness vs Kurtosis : Comparision and Differences | Which Should You Learn?
- What is the Future scope of Data Science ? : Comprehensive Guide [ For Freshers and Experience ]
- Confusion Matrix in Python Sklearn | A Complete Beginners Guide | REAL-TIME Examples
- Polynomial Regression | All you need to know [ Job & Future ]
- What is a Web Crawler? : Expert’s Top Picks | Everything You Need to Know
- Pandas vs Numpy | What to learn and Why? : All you need to know
- What Is Data Wrangling? : Step-By-Step Process | Required Skills [ OverView ]
- What Does a Data Scientist Do? : Step-By-Step Process
- Data Analyst Salary in India [For Freshers and Experience]
- Elasticsearch vs Solr | Difference You Should Know
- Tools of R Programming | A Complete Guide with Best Practices
- How To Install Jenkins on Ubuntu | Free Guide Tutorial
- Skills Required to Become a Data Scientist | A Complete Guide with Best Practices
- Applications of Deep Learning in Daily Life : A Complete Guide with Best Practices
- Ridge and Lasso Regression (L1 and L2 regularization) Explained Using Python – Expert’s Top Picks
- Simple Linear Regression | Expert’s Top Picks
- Dispersion in Statistics – Comprehensive Guide
- Future Scope of Machine Learning | Everything You Need to Know
- What is Data Analysis ? Expert’s Top Picks
- Covariance vs Correlation | Difference You Should Know
- Highest Paying Jobs in India [ Job & Future ]
- What is Data Collection | Step-By-Step Process
- What Is Data Processing ? A Step-By-Step Guide
- Data Analyst Job Description ( A Complete Guide with Best Practices )
- What is Data ? All you need to know [ OverView ]
- What Is Cleaning Data ?
- What is Data Scrubbing?
- Data Science vs Data Analytics vs Machine Learning
- How to Use IF ELSE Statements in Python?
- What are the Analytical Skills Necessary for a Successful Career in Data Science?
- Python Career Opportunities
- Top Reasons To Learn Python
- Python Generators
- Advantages and Disadvantages of Python Programming Language
- Python vs R vs SAS
- What is Logistic Regression?
- Why Python Is Essential for Data Analysis and Data Science
- Data Mining Vs Statistics
- Role of Citizen Data Scientists in Today’s Business
- What is Normality Test in Minitab?
- Reasons You Should Learn R, Python, and Hadoop
- A Day in the Life of a Data Scientist
- Top Data Science Programming Languages
- Top Python Libraries For Data Science
- Machine Learning Vs Deep Learning
- Big Data vs Data Science
- Why Data Science Matters And How It Powers Business Value?
- Top Data Science Books for Beginners and Advanced Data Scientist
- Data Mining Vs. Machine Learning
- The Importance of Machine Learning for Data Scientists
- What is Data Science?
- Python Keywords
- What is Dimension Reduction? | Know the techniques
- Top Data Science Software Tools
- What is Data Scientist? | Know the skills required
- What is Data Scientist ? A Complete Overview
- Know the difference between R and Python
- What are the skills required for Data Science? | Know more about it
- What is Python Data Visualization ? : A Complete guide
- Data science and Business Analytics? : All you need to know [ OverView ]
- Supervised Learning Workflow and Algorithms | A Definitive Guide with Best Practices [ OverView ]
- Open Datasets for Machine Learning | A Complete Guide For Beginners with Best Practices
- What is Data Cleaning | The Ultimate Guide for Data Cleaning , Benefits [ OverView ]
- What is Data Normalization and Why it is Important | Expert’s Top Picks
- What does the Yield keyword do and How to use Yield in python ? [ OverView ]
- What is Dimensionality Reduction? : ( A Complete Guide with Best Practices )
- What You Need to Know About Inferential Statistics to Boost Your Career in Data Science | Expert’s Top Picks
- Most Effective Data Collection Methods | A Complete Beginners Guide | REAL-TIME Examples
- Most Popular Python Toolkit : Step-By-Step Process with REAL-TIME Examples
- Advantages of Python over Java in Data Science | Expert’s Top Picks [ OverView ]
- What Does a Data Analyst Do? : Everything You Need to Know | Expert’s Top Picks | Free Guide Tutorial
- How To Use Python Lambda Functions | A Complete Beginners Guide [ OverView ]
- Most Popular Data Science Tools | A Complete Beginners Guide | REAL-TIME Examples
- What is Seaborn in Python ? : A Complete Guide For Beginners & REAL-TIME Examples
- Stepwise Regression | Step-By-Step Process with REAL-TIME Examples
- Skewness vs Kurtosis : Comparision and Differences | Which Should You Learn?
- What is the Future scope of Data Science ? : Comprehensive Guide [ For Freshers and Experience ]
- Confusion Matrix in Python Sklearn | A Complete Beginners Guide | REAL-TIME Examples
- Polynomial Regression | All you need to know [ Job & Future ]
- What is a Web Crawler? : Expert’s Top Picks | Everything You Need to Know
- Pandas vs Numpy | What to learn and Why? : All you need to know
- What Is Data Wrangling? : Step-By-Step Process | Required Skills [ OverView ]
- What Does a Data Scientist Do? : Step-By-Step Process
- Data Analyst Salary in India [For Freshers and Experience]
- Elasticsearch vs Solr | Difference You Should Know
- Tools of R Programming | A Complete Guide with Best Practices
- How To Install Jenkins on Ubuntu | Free Guide Tutorial
- Skills Required to Become a Data Scientist | A Complete Guide with Best Practices
- Applications of Deep Learning in Daily Life : A Complete Guide with Best Practices
- Ridge and Lasso Regression (L1 and L2 regularization) Explained Using Python – Expert’s Top Picks
- Simple Linear Regression | Expert’s Top Picks
- Dispersion in Statistics – Comprehensive Guide
- Future Scope of Machine Learning | Everything You Need to Know
- What is Data Analysis ? Expert’s Top Picks
- Covariance vs Correlation | Difference You Should Know
- Highest Paying Jobs in India [ Job & Future ]
- What is Data Collection | Step-By-Step Process
- What Is Data Processing ? A Step-By-Step Guide
- Data Analyst Job Description ( A Complete Guide with Best Practices )
- What is Data ? All you need to know [ OverView ]
- What Is Cleaning Data ?
- What is Data Scrubbing?
- Data Science vs Data Analytics vs Machine Learning
- How to Use IF ELSE Statements in Python?
- What are the Analytical Skills Necessary for a Successful Career in Data Science?
- Python Career Opportunities
- Top Reasons To Learn Python
- Python Generators
- Advantages and Disadvantages of Python Programming Language
- Python vs R vs SAS
- What is Logistic Regression?
- Why Python Is Essential for Data Analysis and Data Science
- Data Mining Vs Statistics
- Role of Citizen Data Scientists in Today’s Business
- What is Normality Test in Minitab?
- Reasons You Should Learn R, Python, and Hadoop
- A Day in the Life of a Data Scientist
- Top Data Science Programming Languages
- Top Python Libraries For Data Science
- Machine Learning Vs Deep Learning
- Big Data vs Data Science
- Why Data Science Matters And How It Powers Business Value?
- Top Data Science Books for Beginners and Advanced Data Scientist
- Data Mining Vs. Machine Learning
- The Importance of Machine Learning for Data Scientists
- What is Data Science?
- Python Keywords

Python vs R vs SAS
Last updated on 13th Oct 2020, Artciles, Blog, Data Science
In this topic, we are going to compare all the three languages on various aspects to give you a clear perspective about the market value and capabilities of these languages, so that you can choose the language with which you can move forward.
It is a well-known fact that to learn data analysis, you can use three important languages that are Python, R, and SAS.
If you are a fresher in the data science community and do not have experience in any of the languages mentioned above, then it is vital to be acquainted with at least one language.
Subscribe For Free Demo
Error: Contact form not found.
What is Python?
It is an interactive and interpreted high-level object-oriented programming language. It is known for simplicity and clear syntax which in turn increases readability. It is easy to learn and understand. It is largely used as an open-source scripting language that supports many libraries used for model building or statistical operation on data. It is used by many biggies like Google, Quora, Reddit, etc.
What is SAS?
SAS has been proved as one of the unchallenged leaders in the field of data science. It is known for its huge variety of statistical functions, good GUI and great technical support experience. It is also easy to learn. SAS is used by various IT companies like Nestle, Barclays, Volvo, and HSBC. But, it is not open-source and ends up being an expensive option for a beginner.
What is R?
R is a counterpart of SAS and is free as it is an open-source platform. It is mainly used in the academics and research section. As it is open-source, it is highly extensible and there are quick releases of the software with the latest techniques. You can find multiple information sources for R over the web.
Comparison Factors: Python vs R vs SAS
Let us now compare some factors of Python, SAS, and R to choose the best which suits your requirement.
1. Cost-Effectiveness:
- As we have already discussed, Python and R both are open source languages and are free to download. Although we can get a lot of documentation for these languages, it does not have any tech-support and warranty.
- Small and medium-sized companies prefer these 2 languages over SAS due to its transparency nature in all functionalities without purchasing any license.
- On the other hand, SAS has licensed software and a very expensive one. Mostly big IT companies can afford to buy and work over it. There are various features that can be utilized only after purchasing a few upgrades.
2. Learning Ease:
- Python is very easy to learn and understand due to its simplicity and versatility. It can be used by beginners who are new to programming as well as to data science.
- As R is a low-level programming language, it takes time to understand and learn to code in R. If not correctly implemented, even minor tasks will become Herculean and involve complex code lines. Its overall learning can be considered as average to high.
- SAS is one of the easiest languages across the world. Anyone having no prior programming knowledge can learn SAS. Those who are familiar with SQL can easily understand SAS. Moreover, it has a very good GUI and comprehensive documentation which makes it easy to learn.
3. Graphical Capabilities:
- In the case of graphical capabilities, Python gives a tough competition to R with the help of graphical packages such as VisPy, Matplotlib. But it is still complex when compared to R.
- R has the best graphical capabilities because of the packages like Lattice, ggplot, RGIS, etc. The graphical presentation is very much important when we are talking about data science. R produces a dynamic and interactive graphic interface.
- SAS provides functional graphical functionalities. But it is purely functional. To do any customization over it is a difficult task to achieve. To customize, we need to understand the SAS Graph package thoroughly.
4. Data Management Capabilities:
R computes everything in RAM. This is a big disadvantage of R as it is dependent on a machine’s RAM size. Any task performance can vary and perform as per the machine’s RAM. Although it has been removed. For data management and handling factor, we can conclude that all three of Python, SAS, and R fare equally well and all provide a parallel way of computations.
5. Community & Customer Support:
- As Python and R being open-source languages, there is no technical support provided for any issues. Although, there are various big online communities from there you can get great help for any issues.
- SAS provides an awesome technical support experience that is not available for Python and R. It also has a great community.
6. Job Opportunities:
- As Python and R are open source and free, those are mostly used by startups or organizations looking for cost-effectiveness. According to a survey, there is a tremendous spike for Python/R job openings. They are giving tough competition to the SAS market.
- As most big organizations use SAS, there are a large number of jobs opening all over the market for SAS. It is still a market leader globally.
7. Application Advancements:
- Due to the open nature of R and Python, the development of new features and techniques are fast as compared to SAS. Although there are chances of issues in development as they are not well-tested due to its open contribution.
- SAS introduces a new version in the form of software releases or rollouts. As it is a licensed one, all the features and updates are well tested. It is less prone to errors as compared to Python and R.
8. Deep Learning:
- Python has progressed dramatically in the field of deep learning by introducing TensorFlow and Keras.
- R has introduced KerasR and Keras packages. These are behaving as an interface for Python Keras packages.
- SAS has recently introduced deep learning and it is still in the development phase. There is a long road to travel for SAS for deep learning.