Hadoop Training Objectives
- Databases are a type of data.
- Technologies for Stream Processing.
- Notebooks on the web.
- Machine Learning Algorithms.
- Hadoop SQL.
- Platforms for messaging.
- Management of global resources.
- Hadoop YARN.
- Hadoop MapReduce.
- Hadoop HDFS .
- Stream processing, fraud detection and prevention, content management, and risk management are only a few of the Hadoop applications.
- Hadoop is used by the financial industry, the healthcare sector, government departments, retailers, financial trading and forecasting, and other industries.
- Hadoop Architect
- Data Visualizer
- MapReduce Developer
- Data Architect
- DevOps
- Hadoop Administrator
- Data Security Admin
- Data Scientist
- Software Developer
- Data Analyst
- Hadoop Developer
- Data Developer
- Pig and Hive make Hadoop programming simpler for SQL experts as well.
- Pig and Hive are simple to learn and code, making it simple for SQL professionals to master their Hadoop skills.
- Hadoop skills are in high demand – there's no denying it! As a result, it is important for IT professionals to stay current with Hadoop and Big Data technologies.
- Apache Hadoop offers you the tools you need to advance your career, including the following benefits: Career advancement at a faster pace.
- Hands-on experience is recommended.
- A man becomes perfect with practice.
- Join the blogosphere by subscribing to it.
- Following blogs can assist in gaining a greater understanding than simply reading books.
- Register for a class.
- A qualification path should be followed.
- From the standpoint of programming, problem-solving.
- Architecting and architecture are two different things.
- Keeping track of everything.
- Workflow architecture, scheduling, and implementation.
- Data loading, as well as all other aspects of dealing with data in different formats.
- Hadoop is an open-source software architecture for storing and processing data on commodity hardware clusters.
- It has a lot of storage for any kind of data, a lot of computing power, and it can handle practically unlimited concurrent tasks or jobs.
- It is a open source.
- Cluster of high scalability.
- Fault Tolerance is a feature that is accessible.
- There is a high level of availability.
- Cost-effectiveness is a term used to describe how effective something is.
- Hadoop gives you a lot of options.
- It is easy to use.
- Hadoop makes use of the concept of Data Locality.
Request more informations
Phone (For Voice Call):
+91 89258 75257
WhatsApp (For Call & Chat):
+91 89258 75257
Top Companies Placement
As a Hadoop Business Analyst, one will have to conjecture business obligations and also must be able to elucidate application, or system functionality into utilitarian stipulations, implement the GAP interpretation among ADS & NON-ADS data sources and much more are often rewarded with substantial pay raises as shown below.
- Designation
-
Annual SalaryHiring Companies
Top Skills You Will Gain
- Big Data, HDFS
- YARN, Spark
- MapReduce
- PIG, HIVE
- HBase, Mahout
- Spark MLLib
- Solar, Lucene
- Zookeeper, Oozie
Online Classroom Batches Preferred
No Interest Financing start at ₹ 5000 / month
Corporate Training
- Customized Learning
- Enterprise Grade Learning Management System (LMS)
- 24x7 Support
- Enterprise Grade Reporting
Hadoop Course Curriculam
Trainers Profile
LearnoVita trainers in available for Hadoop Online Course including 24/7 live support. The essence of the hadoop is affording recorded sessions, demos, and study materials. Our Instructors are working in Hadoop and with real time experienced for 10+ more years in MNC's . Our training will be focused on assisting in placements as well.
Pre-requisites
Basic prerequisites for learning Big Data Testing : Linux , Java , SQL.
Syllabus of Hadoop Course in Gurgaon Download syllabus
- High Availability
- Scaling
- Advantages and Challenges
- What is Big data
- Big Data opportunities,Challenges
- CharLearnoVitaristics of Big data
- Hadoop Distributed File System
- Comparing Hadoop & SQL
- Industries using Hadoop
- Data Locality
- Hadoop Architecture
- Map Reduce & HDFS
- Using the Hadoop single node image (Clone)
- HDFS Design & Concepts
- Blocks, Name nodes and Data nodes
- HDFS High-Availability and HDFS Federation
- Hadoop DFS The Command-Line Interface
- Basic File System Operations
- Anatomy of File Read,File Write
- Block Placement Policy and Modes
- More detailed explanation about Configuration files
- Metadata, FS image, Edit log, Secondary Name Node and Safe Mode
- How to add New Data Node dynamically,decommission a Data Node dynamically (Without stopping cluster)
- FSCK Utility. (Block report)
- How to override default configuration at system level and Programming level
- HDFS Federation
- ZOOKEEPER Leader Election Algorithm
- Exercise and small use case on HDFS
- Map Reduce Functional Programming Basics
- Map and Reduce Basics
- How Map Reduce Works
- Anatomy of a Map Reduce Job Run
- Legacy Architecture ->Job Submission, Job Initialization, Task Assignment, Task Execution, Progress and Status Updates
- Job Completion, Failures
- Shuffling and Sorting
- Splits, Record reader, Partition, Types of partitions & Combiner
- Optimization Techniques -> Speculative Execution, JVM Reuse and No. Slots
- Types of Schedulers and Counters
- Comparisons between Old and New API at code and Architecture Level
- Getting the data from RDBMS into HDFS using Custom data types
- Distributed Cache and Hadoop Streaming (Python, Ruby and R)
- YARN
- Sequential Files and Map Files
- Enabling Compression Codec’s
- Map side Join with distributed Cache
- Types of I/O Formats: Multiple outputs, NLINEinputformat
- Handling small files using CombineFileInputFormat
- Hands on “Word Count” in Map Reduce in standalone and Pseudo distribution Mode
- Sorting files using Hadoop Configuration API discussion
- Emulating “grep” for searching inside a file in Hadoop
- DBInput Format
- Job Dependency API discussion
- Input Format API discussion,Split API discussion
- Custom Data type creation in Hadoop
- ACID in RDBMS and BASE in NoSQL
- CAP Theorem and Types of Consistency
- Types of NoSQL Databases in detail
- Columnar Databases in Detail (HBASE and CASSANDRA)
- TTL, Bloom Filters and Compensation
- HBase Installation, Concepts
- HBase Data Model and Comparison between RDBMS and NOSQL
- Master & Region Servers
- HBase Operations (DDL and DML) through Shell and Programming and HBase Architecture
- Catalog Tables
- Block Cache and sharding
- SPLITS
- DATA Modeling (Sequential, Salted, Promoted and Random Keys)
- Java API’s and Rest Interface
- Client Side Buffering and Process 1 million records using Client side Buffering
- HBase Counters
- Enabling Replication and HBase RAW Scans
- HBase Filters
- Bulk Loading and Co processors (Endpoints and Observers with programs)
- Real world use case consisting of HDFS,MR and HBASE
- Hive Installation, Introduction and Architecture
- Hive Services, Hive Shell, Hive Server and Hive Web Interface (HWI)
- Meta store, Hive QL
- OLTP vs. OLAP
- Working with Tables
- Primitive data types and complex data types
- Working with Partitions
- User Defined Functions
- Hive Bucketed Tables and Sampling
- External partitioned tables, Map the data to the partition in the table, Writing the output of one query to another table, Multiple inserts
- Dynamic Partition
- Differences between ORDER BY, DISTRIBUTE BY and SORT BY
- Bucketing and Sorted Bucketing with Dynamic partition
- RC File
- INDEXES and VIEWS
- MAPSIDE JOINS
- Compression on hive tables and Migrating Hive tables
- Dynamic substation of Hive and Different ways of running Hive
- How to enable Update in HIVE
- Log Analysis on Hive
- Access HBASE tables using Hive
- Hands on Exercises
- Pig Installation
- Execution Types
- Grunt Shell
- Pig Latin
- Data Processing
- Schema on read
- Primitive data types and complex data types
- Tuple schema, BAG Schema and MAP Schema
- Loading and Storing
- Filtering, Grouping and Joining
- Debugging commands (Illustrate and Explain)
- Validations,Type casting in PIG
- Working with Functions
- User Defined Functions
- Types of JOINS in pig and Replicated Join in detail
- SPLITS and Multiquery execution
- Error Handling, FLATTEN and ORDER BY
- Parameter Substitution
- Nested For Each
- User Defined Functions, Dynamic Invokers and Macros
- How to access HBASE using PIG, Load and Write JSON DATA using PIG
- Piggy Bank
- Hands on Exercises
- Sqoop Installation
- Import Data.(Full table, Only Subset, Target Directory, protecting Password, file format other than CSV, Compressing, Control Parallelism, All tables Import)
- Incremental Import(Import only New data, Last Imported data, storing Password in Metastore, Sharing Metastore between Sqoop Clients)
- Free Form Query Import
- Export data to RDBMS,HIVE and HBASE
- Hands on Exercises
- HCatalog Installation
- Introduction to HCatalog
- About Hcatalog with PIG,HIVE and MR
- Hands on Exercises
- Flume Installation
- Introduction to Flume
- Flume Agents: Sources, Channels and Sinks
- Log User information using Java program in to HDFS using LOG4J and Avro Source, Tail Source
- Log User information using Java program in to HBASE using LOG4J and Avro Source, Tail Source
- Flume Commands
- Use case of Flume: Flume the data from twitter in to HDFS and HBASE. Do some analysis using HIVE and PIG
- HUE.(Hortonworks and Cloudera)
- Workflow (Action, Start, Action, End, Kill, Join and Fork), Schedulers, Coordinators and Bundles.,to show how to schedule Sqoop Job, Hive, MR and PIG
- Real world Use case which will find the top websites used by users of certain ages and will be scheduled to run for every one hour
- Zoo Keeper
- HBASE Integration with HIVE and PIG
- Phoenix
- Proof of concept (POC)
- Spark Overview
- Linking with Spark, Initializing Spark
- Using the Shell
- Resilient Distributed Datasets (RDDs)
- Parallelized Collections
- External Datasets
- RDD Operations
- Basics, Passing Functions to Spark
- Working with Key-Value Pairs
- Transformations
- Actions
- RDD Persistence
- Which Storage Level to Choose?
- Removing Data
- Shared Variables
- Broadcast Variables
- Accumulators
- Deploying to a Cluster
- Unit Testing
- Migrating from pre-1.0 Versions of Spark
- Where to Go from Here
Request more informations
Phone (For Voice Call):
+91 89258 75257
WhatsApp (For Call & Chat):
+91 89258 75257
Industry Projects
Career Support
Our Hiring Partner
Request more informations
Phone (For Voice Call):
+91 89258 75257
WhatsApp (For Call & Chat):
+91 89258 75257
Exam & Certification
At LearnoVita, You Can Enroll in Either the instructor-led Hadoop Online Course, Classroom Training or Online Self-Paced Training.
Hadoop Online Training / Class Room:
- Participate and Complete One batch of Hadoop Training Course
- Successful completion and evaluation of any one of the given projects
Hadoop Online Self-learning:
- Complete 85% of the Hadoop Certification Training
- Successful completion and evaluation of any one of the given projects
These are the Different Kinds of Certification levels that was Structured under the Cloudera Hadoop Certification Path.
- Cloudera Certified Professional - Data Scientist (CCP DS)
- Cloudera Certified Administrator for Hadoop (CCAH)
- Cloudera Certified Hadoop Developer (CCDH)
- Learn About the Certification Paths.
- Write Code Daily This will help you develop Coding Reading and Writing ability.
- Refer and Read Recommended Books Depending on Which Exam you are Going to Take up.
- Join LernoVita Hadoop Certification Training in Gurgaon That Gives you a High Chance to interact with your Subject Expert Instructors and fellow Aspirants Preparing for Certifications.
- Solve Sample Tests that would help you to Increase the Speed needed for attempting the exam and also helps for Agile Thinking.

Our Student Successful Story
Hadoop Course FAQ's
- LearnoVita Best Hadoop Training in Gurgaon will assist the job seekers to Seek, Connect & Succeed and delight the employers with the perfect candidates.
- On Successfully Completing a Career Course from LearnoVita Best Hadoop Course in Gurgaon, you Could be Eligible for Job Placement Assistance.
- 100% Placement Assistance* - We have strong relationship with over 650+ Top MNCs, When a student completes his/ her course successfully, LearnoVita Placement Cell helps him/ her interview with Major Companies like Oracle, HP, Wipro, Accenture, Google, IBM, Tech Mahindra, Amazon, CTS, TCS, HCL, Infosys, MindTree and MPhasis etc...
- LearnoVita is the Legend in offering placement to the students. Please visit our Placed Students's List on our website.
- More than 5400+ students placed in last year in India & Globally.
- LearnoVita is the Best Hadoop Training Institute in Gurgaon Offers mock interviews, presentation skills to prepare students to face a challenging interview situation with ease.
- 85% percent placement record
- Our Placement Cell support you till you get placed in better MNC
- Please Visit Your Student's Portal | Here FREE Lifetime Online Student Portal help you to access the Job Openings, Study Materials, Videos, Recorded Section & Top MNC interview Questions
- LearnoVita Certification is Accredited by all major Global Companies around the World.
- LearnoVita is the unique Authorized Oracle Partner, Authorized Microsoft Partner, Authorized Pearson Vue Exam Center, Authorized PSI Exam Center, Authorized Partner Of AWS.
- Also, LearnoVita Technical Experts Help's People Who Want to Clear the National Authorized Certificate in Specialized IT Domain.
- LearnoVita is offering you the most updated Hadoop certification training in Gurgaon, relevant, and high-value real-world projects as part of the training program.
- All training comes with multiple projects that thoroughly test your skills, learning, and practical knowledge, making you completely industry-ready.
- You will work on highly exciting projects in the domains of high technology, ecommerce, marketing, sales, networking, banking, insurance, etc.
- After completing the projects successfully, your skills will be equal to 6 months of rigorous industry experience.
- We will reschedule the Hadoop classes in Gurgaon as per your convenience within the stipulated course duration with all such possibilities.
- View the class presentation and recordings that are available for online viewing.
- You can attend the missed session, in any other live batch.

- Build a Powerful Resume for Career Success
- Get Trainer Tips to Clear Interviews
- Practice with Experts: Mock Interviews for Success
- Crack Interviews & Land Your Dream Job
Get Our App Now!


