Top Data Science Programming Languages

Top Data Science Programming Languages

Last updated on 01st Oct 2020, Artciles, Blog

About author

Guna (Chief Data Scientist )

High level Domain Expert in TOP MNCs with 8+ Years of Experience. Also, Handled Around 16+ Projects and Shared his Knowledge by Writing these Blogs for us.

(5.0) | 12389 Ratings 1525

In today’s highly competitive market, which is anticipated to intensify further, the data science aspirants are left with no solution but to upskill and upgrade themselves as per the industry demands. Prevailing situation odes the mismatch between demand and supply ratio of data scientists and other data professionals in the market, which makes up a great age to grab better and progressive opportunities. The knowledge and application of programming languages that better amplify the data science industry, are must to have.

Therefore, here we have compiled the list of top 10 data science programming languages for 2020 that aspirants need to learn to improve their career.

Data science has been among the top technologies today and has become marketwide a strong buzzword. A data scientist is one of the key roles who doesn’t only have to make do with mathematical problems and analytical solutions but is also expected to work, understand and know equally well programming languages that are useful for data science and machine learning. There becomes a need to access the data which is gathered by you and for that the perfect blend of right skill and a perfect tool is needed so that you are provided with the results as per your expectations with the information provided. The scope of Data science is increasing day by day and is expected to increase in many more future years to come. Data science manages to take into consideration many domains such as statistics, mathematics, information technology, computer science, etc.  You should really have a good hands-on upon one of the languages but having more than one language in your resume is never a bad idea. Due to the growing demand of the data scientists and data science enthusiasts, it becomes an urgency to make a combined list of all the possible data science languages and in this post, we are going to read about the same.

Subscribe For Free Demo

Error: Contact form not found.

Top Programming Languages in Data Science

Data Science has many technical languages that are used for machine learning, let’s look at some of the programming languages in Data Science.

Data-Science-Languages-Cycle

1. Python

First and foremost the language which you must have heard about in your surroundings is the Python programming language. Very easy to read and code, functional programming language not only participates in the core development area but also effectively helps in data science as a majority of libraries have been predefined in this very language. The libraries include those like sci-kit learn, pandas, numpy, sci-py, matplotlib, etc.

One of the main reasons why Python has been gaining so much popularity is because of the ease and simplicity among the programmers and its agility and ability to quickly combine and integrate with the top-performing algorithms which are typically written in Fortran or C language. With the advent and sharp advancement of data science, predictive modeling and machine learning the increasing demand for the Python developers is rising exponentially and therefore it is being used significantly in the field of web development, data mining, scientific computing, etc.

2. R programming

One statistical language if it doesn’t have to be about Python has to be definitely about R. This is quite a legacy language when compared to Python and its natives, becoming one of the most widely used instruments as an open-source language, and the R Foundation offers a graphics and statistical computing software environment for statistical computing. The skillsets of this domain have very high chances of jobs as they are closely associated with data science and machine learning. This language is solely built for analytical purposes and therefore it provides many statistical models. The public R package repository and the archival list consists of 8000+ network contributed packages. RStudio, Microsoft and many top giants have been involved in the contribution and support of the R community.

3. Java

When it has to be about Java, I don’t think much of an explanation is actually required as this has been an evergreen programming language which is present and doing way too successfully in every domain of technology it has entered in. Former Sun’s protégé and now Oracle’s, the latter has been keeping in view about the new features which are relevant as per the day to day market in every new Java release. It is mainly used to be the backbone of any architecture and framework and therefore in the case of data science it is used to communicate and establish a connection and manage the working of the underlying components which are responsible to make the machine learning and data science happen.

4. Scala

One other popular programming language which has come into play is the scala functional programming language which was based mainly on a deal with Apache spark and its working, enabling it to work faster and thereby optimizing performance. This one is again an open-source and a general-purpose programming language which directly runs on top of JVM. This is mainly associated with Big data and Hadoop and therefore works well when the use case is about large volumes of data. It is a strongly typed language and therefore becomes easy to deal with kind of a language among the programmers. Because of its support with the JVM or the Java Virtual Machine, it allows the interoperability with Java language as well and therefore scala can be known to be a very strong general-purpose programming language and thereby becoming one among the top choices in this field

5. SQL

Structured Query Language or SQL (as popularly abbreviated) is the core of databases and backend systems and is among the most popular languages in the field of data science. It is used well in querying and editing information which is typically stored in relational databases. It is also mainly used for keeping and fetching data for decades.

This becomes among the popular choice when it has to be about reducing the query times, turnaround times, managing large databases by making use of its fast processing time. One of the biggest assets which you can have in the field of data science and technology, in general, is to learn the use of SQL language. There have been many other components[for querying today and also many other NoSQL databases present in the market today but they all have their roots from SQL programming language.

6. MATLAB

This one is among the core data science languages which are responsible for quick, solid and stable algorithms to be used for numerical computing. It is considered to be among the best-suited language for scientists, mathematicians, statisticians, and developers. It can easily play along with typical mathematical transformations and concepts such as Laplace, Fourier, Integral and differential calculus, etc.

The best part about data science enthusiasts and data scientists is that this language provides a wide array of inbuilt as well as custom-built libraries which are useful for emerging data scientists as they do not have to dig in deep to apply the knowledge of Matlab.

7. TensorFlow

One among the widely used languages which marks a presence in the field of data science is Tensorflow. This is developed by Google and this open-source library is gaining to be much more popular when it comes to doing numerical calculations and computations. This framework works on the large suitability of the data. It is used in cases such as graphical computations where it can make use of tuned C++ code.

One of the major advantages of using TensorFlow is that it makes use of GPUs and CPUs along with distributed programming. This works on the concept of deep learning and can be used to train huge neural networks on the set of immense data in a short span of time. This is termed as the second level of generation system from the Google Brain team which powers a large scale of services such as Google Search, Cloud Speech and photos.

8. Keras

Keras is a minimalist library of Python which is used for deep learning and it runs on top of Theano or TensorFlow and the main aim behind its built was to implement machine learning models easily and quickly for developmental and research purposes. This can be seen to be running on the legacy version of Python and the current version i.e. 2.7 or 3.5. and it can be seen to be seamless when running on CPUs or GPUs. It makes use of the four guiding principles viz. Minimalism, modularity, Python, and Extendability. The focus is the model idea and the major model is the sequence which is a layer of linear stacks.

Data science Sample Resumes! Download & Edit, Get Noticed by Top Employers! Download

This means that the layers are to be added in the created sequence and the computation has to be done in the order of the expected computation. Once whenever you define you can make use of the compiled model which uses the underlying frameworks and the components to optimize the computation thereby specifying the loss function and to be used optimizer, The model is then checked for the viability along with the fit with data. This can be done with one batch of data at a particular time or by firing off the entire model training regime. The models can then be used for predictions. The construction can be summarized as follows, defining the model, make sure its compilable, fitting your model, making predictions upon it.

Conclusion

There are various data science programming languages being used widely in the markets today. It cannot be outrightly said if one language is better than the other in any way. It totally depends on the kind of use case you have in your project or organization and the language can be chosen accordingly, All the languages have their own pros and cons and therefore a basic level of introductory analysis is required to know which is the right language to be used in data science for you. Hope you liked our article. Stay tuned for more like these.

Are you looking training with Right Jobs?

Contact Us

Popular Courses